

## WJEC (Eduqas) Biology A-level

Topic 2.4 - Sexual reproduction in plants

#### Flashcards

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

**DOG PMTEducation** 

www.pmt.education





## What is a dicotyledon?







#### What is a dicotyledon?

## A plants that produces seeds that contain two cotyledons; they have two primary leaves.







## What is an insect-pollinated flower?







#### What is an insect-pollinated flower?

# A type of flower that relies on insects to transfer pollen grains between flowers.







## Label the diagram of the insect-pollinated flower below.



Network www.pmt.education





## Label the diagram of the insect-pollinated flower below.



www.pmt.education





## What is the calyx?







#### What is the calyx?

- The first part of the flower that is formed
- Consists of leafy structures that protect the flower during development







### What is the corolla?







#### What is the corolla?

### All of the petals of a flower.







### What is the carpel?







#### What is the carpel?

# The **female** part of the plant consisting of a **stigma**, a **style** and an **ovary**.







### What is the stamen?







#### What is the stamen?

The **male** part of the plant consisting of an **anther** and a **filament** that is involved in the production of male gametes in the form of pollen grains.







## Describe the adaptations of insect-pollinated plants.







#### Describe the adaptations of insect-pollinated plants.

- Internal anthers and small stigma directly touch insects
- Large, bright petals and nectar from glands attract insects
- May produce **chemicals** to the mimic scent of female insects or to intoxicate insects
- Grow individually
- Large pollen grains, sometimes with projections that attach to insect







## What is a wind-pollinated plant?







#### What is a wind-pollinated plant?

# A type of flower that relies on wind to transfer pollen grains between flowers.







## Describe the adaptations of wind-pollinated plants.







#### Describe the adaptations of wind-pollinated plants.

- External anthers optimise pollen dispersal
- Excess pollen compensates for wind wastage
- Feathery stigma catches pollen from the air
- Small, dull petals (no need to attract insects)
- Grow **densely** over large areas
- Light pollen grains







## How does a pollen grain form in the anther?







#### How does a pollen grain form in the anther?

- Large numbers of pollen mother cells produced by mitosis
- Meiosis of diploid mother cells in the anther forms four haploid microspores
- Haploid microspores mature into pollen grains via mitosis







## Describe the role of the tapetum in pollen grain development.







Describe the role of the tapetum in pollen grain development.

- Specialised layer of cells in the anther
- Provides nutrients to developing pollen grains







## Describe the structure of mature pollen grains.







#### Describe the structure of mature pollen grains.

- Generative cell (haploid nucleus) produces two male gametes via mitosis
- Pollen tube cell (also has its own nucleus) elongates to penetrate ovule
- Outer protective coating







### Define dehiscence.







#### Define dehiscence.

# The splitting of the anther resulting in the release of pollen grains.







## How does the ovule form in the ovary?







#### How does the ovule form in the ovary?

- Meiosis of megaspore cell produces four haploid megaspores
- Growth and development (involving three mitotic divisions) of one of the megaspores
- Embryo sac forms containing eight haploid nuclei







## Describe the structure of the embryo sac.







Describe the structure of the embryo sac.

- **Two polar nuclei** form endosperm
- **Ovum** forms zygote
- **Two synergids** help generative nucleus of pollen grain to reach ovum
- Three antipodal cells
- Outer protective coating







## **Define pollination**







#### Define pollination

# The deposition of pollen onto a stigma from an anther.







## Name the two types of pollination.






#### Name the two types of pollination.

# Cross-pollinationSelf-pollination







#### What is cross-pollination?







#### What is cross-pollination?

#### A type of pollination in which pollen is transferred from an anther of one plant to a stigma of a **different** plant.







#### What is self-pollination?







#### What is self-pollination?

#### A type of pollination in which pollen is transferred from an anther of a plant to a stigma of the **same** plant.







## Compare the genetic diversity produced by cross- and self-pollination.







#### Compare the genetic diversity produced by crossand self-pollination.

Cross-pollination results in plants with greater genetic diversity whereas self-pollination produces plants with less diversity.







## Outline the adaptations of flowers that promote cross-pollination.







### Outline the adaptations of flowers that promote cross-pollination.

- Maturation of pollen and ovary at different times
- Physical features prevent self-pollination, e.g. heterostyly, male and female flowers on different parts of the plant







#### Where does double fertilisation occur?







#### Where does double fertilisation occur?

#### Embryo sac of ovule.







### How do the male nuclei reach the embryo sac?







#### How do the male nuclei reach the embryo sac?

- Pollen grain from one plant lands on the stigma of another
- Mitosis of pollen grain to form a pollen tube nucleus and two male gametes
- Pollen tube grows from the grain down to the ovule via the digestion of the style
- Pollen tube delivers two male gametes







## How does the pollen tube enter into the embryo sac?







#### How does the pollen tube enter into the embryo sac?

#### Via the micropyle







#### Define micropyle.







#### Define micropyle.

- Pore in the integument of an ovule through which the pollen tube enters the embryo sac
- Remains as a pore in the testa (seed coat)







### What happens during double fertilisation?







What happens during double fertilisation?

In the embryo sac of ovule:

- One sperm cell fertilises an ovum to form a diploid zygote
- One sperm cell fuses with **two polar nuclei** to form a **triploid primary endosperm**







### What happens to the ovule following double fertilisation?







### What happens to the ovule following double fertilisation?

#### Develops into the seed.







### How is the diploid embryo formed following double fertilisation?







How is the diploid embryo formed following double fertilisation?

# Diploid zygote undergoes mitosis to form diploid embryo.







#### How is the endosperm formed?







#### How is the endosperm formed?

# Nucleus of triploid endosperm divides by mitosis to form endosperm.







#### What is the function of the endosperm?







#### Why is the function of the endosperm?

#### Acts as a nutrient source for the embryo.







#### What structure forms the testa?







#### What structure forms the testa?

#### Integuments develop into the testa.







### What happens to the ovary following double fertilisation?







### What happens to the ovary following double fertilisation?

# It develops into a fruit wall surrounding the seed.







#### What is the plumule?







#### What is the plumule?

# The part of a plant embryo that develops into the primary shoot.







#### What is the radicle?







#### What is the radicle?

# The part of a plant embryo that develops into the root.







#### What is the hilum?






#### What is the hilum?

# A scar on the testa as a result of separation from its funicle.







### Define germination.







### Define germination.

# The process by which a plant grows from a seed.







## Give an example of a non-endospermic seed.







#### Give an example of a non-endospermic seed.

### Broad bean (Vicia faba)







# Describe the stages of germination in a non-endospermic seed.







### Describe the stages of germination in a non-endospermic seed.

- Seed absorbs water through the micropyle causing swelling of the cotyledon, enzyme activation and the rupture of the seed coat
- Food reserves from the cotyledons are hydrolysed
- Provides energy for the growth of the plumule and radicle, as well as respiration







# Describe the stages of germination in an endospermic seed.







### Describe the stages of germination in an endospermic seed.

- 1. Seed absorbs water, activating the embryo to secrete the cell-signalling plant growth factor, gibberellin
- 2. Gibberellins induce the synthesis of amylase
- 3. Amylase diffuses to the endosperm layer and causes the hydrolysis of starch to glucose







# State the factors affecting seed germination.







### State the factors affecting seed germination.

- Water availability (trigger secretions of gibberellin)
- Temperature
- Availability of O<sub>2</sub> for respiration
- Use of fertiliser provides extra nutrients for growth



